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Structure of the cholesteric focal conic domains at the free surface

R. Meister, M.-A. Hallge H. Dumoulin, and P. Pieranski
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Atomic force microscope examinations of the free surface and of microtome cuts of a cholesteric oligomer
are reported. The obtained images lead to a model of the structure of cholesteric focal conic domains that
appear spontaneously at the free surface. These domains develop in order to fulfill the boundary condition at
the free surface together with a planar bulk texture. Estimations of the free energy confirm this model.
[S1063-651%96)04110-4

PACS numbdps): 61.30—~v, 61.16-d, 68.10—m

I. INTRODUCTION the anisotropic propagation of the fract{fe3] and also sur-
faces created by the action of a microtome knife in quenched

Atomic force microscopgAFM) [1] investigations are liquid crystals have a topography that depends on the texture
useful methods of exploring surfaces that are not flat, espedf the cut material. Therefore, the microtome cuts can be
cially in the case where the resolution of optical methods igXxplored by AFM. Examples of these investigations are cho-
not sufficiently high. In this regard, liquid crystal phases ardesteric[11] and blue phasels4].
interesting topics because they can have nonplanar surface In this article we will report about AFM investigations of
structures that are very small in amplitude. An examplethe free surface and of microtome cuts of a cholesteric oli-
shown by de Gennd#] is a periodic system of grooves and 9omer. These tvs_/o surfaces give complementary information
hills that should appear at the free surfaces of nematic liqui@n the cholesteric texture and allow us to resolve the three-
crystals with homeotropic boundary condition submitted to simensional structure of the cholesteric focal-conic domains.
horizontal magnetic field. Another example of surfaces that
are not flat are liquid crystals Whe_re defect lines start and/or Il EXPERIMENT
end at the free surface. These reliefs have been successfully
examined by AFM[3]. There exist also investigations on  In our examinations we used the following siloxan oligo-
smectic phasest,5]. mer supplied by Wacker Chemie, Germany via J.-M. Gilli

Cholesteric phases show a very great manifold of possiblé3<n+m=<7):
surface structurg$], depending on several parameters, such
as the thickness of the liquid crystal layer and the thermal _
treatment of the sample. The topology of the system choles |
teric plus homeotropic boundary condition requires the intro-
duction of systems of disclinations. These can be arranged il
several ways, leading to the great number of different struc-
tures. In particular, a double-spiral conical relief correspond-
ing to a focal-conic texture was observid] (see Fig. L

In all these examples the investigated material had to be
sufficiently stiff in order to be examined by AFM methods.
But with the synthesis of new oligomer and polymer sub-
stances a number of useful samples are available. The mat
rial usually possesses a glass transition at elevated temper
ture and can be investigated in the frozen state at roon
temperature without difficulty. But even swallow-tailed mol-
ecules can be successfully examined in their smectic state
[5]. This is due to the “tapping mode(tegistered trademark
of Digital Instrument$ of the AFM where the probing tip is
placed at the end of a vibrating cantilever. The sample inter-
acts with the tip only when the cantilever is at the lowest
position of the vibration cycle. By this the interaction energy
is reduced to a minimum.

A method of getting information about the bulk structure
of mesophases is via microtome cuts or freeze fractures. The FIG. 1. An AFM image of the free surface of the cholesteric
samples can be examined by polarization microsdap$]  focal-conic domains at the free surface. All double spirals show the
or electron microscopy9—-12]. But surfaces produced by a same sense of rotation and possess a conical form with the center at
freeze fracture process are known to possess a relief due tiee highest positioimage length 10 381 nm
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The ratio of the two different mesogenic side chains atsubstance was put onto a substrate and heated to 120 °C. By
tached to the cyclic structure controls the helical pitch. Oumeans of shearing the cholesteric phase was orientated into a
experimental work is based on that oligomer with an equaplanar configuration. The focal conic surface structure devel-
ratio of the chiral and the achiral side chain. The half helicaloped spontaneously at the free surface while the sample was
pitch of this material is 145 nriil5]. Note the glass transi- Placed for 2 min in an oven at 140 °C. After taking the
tion at 50 °C that allows us to investigate the cholesterics@mple out of the oven and letting the temperature decrease
phase with the AFM in the rigid glassy state. to room temperature, the focal conic surface structure was

In order to produce the focal-conic surface structure thdf0zen in the glassy state. _

The exploration of the free surface was made with glass
as support. It showed a planar boundary condition, which is
favorable with respect to the intermediate structure of the

AR

cut sample.

In order to be cut by a microtome, the support for these
samples cannot be glass, but has to be a material that can be
knife water easily cut. Therefore we used “Araldite,” a commercial
resin especially optimized for microtome use. The boundary
conditions are not as simple as with glass. The resulting
structure of the flat surface cholesteric/resin depélikisthe
free surfacgon several parameters, such as the thickness of
the liquid crystal layer, the rubbing of the substrate, and the
thermal treatment of the sample. But as the time scale of the
@ transformations to the preferred state is rather long, we ar-
rived at samples that showed the focal-conic structure at the
free surface, while the boundary at the other surface was still
planar.

The samples were prepared in the following way: Flat
resin plates were made by polymerizing it between two par-
allel glass plates at 60 °C for 2 d. Afterwards, the cholesteric
phase was put on these flat supports. The whole sample was
then put into a compact block @$till liquid) resin and this
was once again polymerized at 60 °C for 2 d.

sample cut The samples were cut with a microtome either perpen-
©) dicular or oblique to the free surface. The thickness of the
cuts varied between approximately 70 nm and 140(se®

FIG. 2. (a) Schematic representation of the microtome cut pro-Fig. 2).
cess. The sample is cut by a diamant edge and the cuts float on the
water surface after the cut. Only the upper sides of the cuts were . RESULTS
examined in our experimentgb) The geometry of the samples.
There are two surfaces cut by the microtome knife: the free surface,
covered with Araldite to suppress convolution effects, and the flat The surface of the cholesteric focal conic domains is
surface cholesteric/support. shown in Fig. 1. The helix axis lies more or less parallel to

sample

P cholesteri

support
(resin

A. Free surface
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FIG. 3. A section of the surface structure due to the helical
twist. Note that the length scale of thexis is considerably smaller
than that of thex axis.

the free surface, giving rise to a surface structure whose pe
riodicity is 195 nm, comparable to the half helical pitch. A
relief is shown in Fig. 3; the height is about 4 nm, leading to  FIG. 5. An AFM image of a microtome cut, perpendicular to the
a mean slope of 2°. The form of the top region is differentfree surface. The image shows the interface cholesteritfeirfree
from that of the bottom, showing different radii of curvature. surfacg. Note that the sample is embedded in Araldite so that the
In the focal conic structure the “cholesteribalf-) planes” image actually shows the interface cholesteric/resin. The structure
are arranged in the form of a double spiral, ending in theof the cholesteric phase has not changed during this covering pro-
center of the spiral. Here two defect lines approach the surcess, however. The image shows the oblique orientation of the helix
face, either two\™ or two 7" lines. axis relative to the free surfagemage length 2407 nm
For thin samples, the diameter of the spirakrisughly) i )
proportional to the thickness of the liquid crystal layer. But if that all spirals possess the same sense of rotation.
the height of the layer is sufficiently large, there seems to be
a maximal value of the spiral diameter. A section through the B. Perpendicular microtome cut
center o_f the heliXFig. 4) reyeals thgt th'e three-dimensional A microtome cut of the cholesteric phase is shown in Fig.
surface is a cone, whose diametefirsthis cas¢5 um, and 5 The relief due to the cholesteric pitch is quite semblant to
wohose height is 9 nm, which results in an average slope ofyat of the free surface, although it is obtained by a totally
1°. L . different process. The height of this relief depends on the
Note that in Fig. 1 the two curves of the crests finish at thehickness of the microtome cuts; the thinner the cuts are the
top of the cone while the groove line is continuous. Note a'“{greater the structure becomes. A section is given in Fig. 6,

showing that here the mean height is about 8 nm, while the
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FIG. 4. A section of the cholesteric focal-conic domains, cut

through the center of the cone. The periodic structure due to the FIG. 6. A section of the cut surface. The profile height is greater
cholesteric pitch is superimposed on the conical form. Note that théhan in Fig. 3, so that here convolution effects are probably of
length scale of the axis is considerably smaller than that of the greater importance. Note that the length scale ofztlais is con-
axis. siderably smaller than that of theaxis.
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whereu is an arbitrary vector antlis a unit vector in the
direction of the twist axis. Another definition declares the
helix axis as the eigenaxis with the greatest eigenvalue of the
(two-dimensional twist tensor{17].

Describing the cholesteric phases by two vector fields per-
pendicular to each othén-t=0) gives some interesting re-
lation to biaxial nematics and allows a simple classification
of the three defect types in cholesterics. Using a third vector
o=nXt, the defects are classified as follows:

Xx. t is continuous,n and o are discontinuous

N: n is continuous,t and o are discontinuous

7. 0 is continuous,n and t are discontinuous.

However the symmetric definition of the three types of
defects does not imply equal distortion energies for the de-

fec
FIG. 7. An AFM image of a microtome cut, oblique to the free

surface. The image shows a cut through a focal conic domain ema-lxAIthOUgh itis sometimes very useful to consider the helix
bedded in the planar bulk textutage length 7000 nin is field as a second vector field which helps in understand-

ing the structure of cholesteric phases, we want to stress that
e . . _there is in principle no need for the definition of a twist axis,
penodwﬂy IS 145 nm, being equal toothe h_alf Ch°|e5te”.cbecause the knowledge bfr) alone is sufficient to describe
pitch. This yields an average angle of 6°. Again, the summits,e cholesteric phase. Another point is that in some circum-
and valleys show different radii of curvature. stances the twist axis cannot be defined unambigidusy;
The given periodicity is the minimal value found. Of ¢, oyample, in a cholesteric that is completely unwound by

course every periodicity greater than the half helical pitchy, o na) forcegthere is no twist at allor at the center of the

can be observed if the helical axis is not in the plane of thgy, e twist cylinders, considered in relation to the blue
cut. phaseghere the twist is equal in every direction perpendicu-
lar to n). Analogous comments apply to the notion of cho-

C. Microtome cuts oblique to the free surface lesteric planes. Neither do we imply any layered structure,

An image of this kind of cut is shown in Fig. 7. The spiral nor any relation between the cholesteric planes at two differ-

arrangement of the cholesteric planes in the region of th&nt points that results in a classification of the two points as
focal conic domain is clearly visible. The bulk phase is still “belonging to the same™ or “belonging to different planes.”
in a planar texture, the periodicity being 174 nm, giving an We will use the notions “cholesteric planes” and “helix
approximation for the angle of inclination of 33°, which is in @xis” only in those circumstances where a helix axis can be
very good agreement with the estimated value of 30°. defined without any difficulty by either of the two above
Contrary to the situation at the free surface, here twdlefinitions (i.e., configurations that do not deviate strongly
groove lines end in the center of the spiral, while the cresfrom the ideal cholesteric structyrand this only to avoid
line is continuous. The correspondence between crests afdherwise clumsy formulations.
grooves to perpendicular and parallel orientations afith A cautionary remark shall also be made on the standard
respect to the surface is therefore inverse to the situation digures of ther and defects and their combinations in pairs.
the free surface. Note how the focal conic domain is embedThe usual images do not give a general director distribution.
ded in the planar texture. The helix axis of those cholesterid he twist axes in these pictures always lie in the figure plane.
planes that lie between the free surface and the center of tHdere the observation of an “additional plane” is directly
spiral makes a greater angle with the plane of the cut than theelated to the defects. In our opinion, the one-to-one relation-
helix axis of those planes that lie on the opposite side of th&hip between the additional plane and defects is no longer

center(still in the region of the focal conic domain fulfilled in the general case. Both the director and the twist
field may be continuous and there are no defects, even if a
IV. DISCUSSION “new plane” seems to appear. The consideration of a cho-
lesteric as a sort of layered system is sometimes very mis-
A. Notations “helix axis” and “cholesteric planes” leading.

fined by several authors, e.g., an implicit vector equationve Will use the convention in which the tips of the pins are
[16]: oriented towards the observer. This convention is especially

important for the imagination of two different cuts of the
nX(u-Vy)n=(2x/p)(u-t)t, (1) same three-dimensional director distribution.
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l ¢ v m AR | ¢ v = & % | FIG. 9. A three-dimensional surface representing the distribu-
. tion of the cholesteric planes in the cholesteric focal-conic domain
R S T S S A at the free surfacghis sketch shows a surfagé=const of Eq(8)].
] 1 2+ @ T T | 1l 1+ @ v T |
| 1L 1+ @ T T I L 1+ e T T | sufficient to describe the surface boundary by a phenomeno-
logical preferred oblique orientation of the helix axis relative
L+ @07 7 1 1+ 07 T to the surfacdsee Fig. 5
(b)
fi=—ki(t-9% or fi=—k; cos(é— &), ()
wheret is the helix axis and is the preferred surface orien-
v, U L A V! tation of the cholesteric.
I J - T 0 - T
v 5 v 5 C. Model |
L N S Y S U In the description of model | we will begin to discuss the
bulk structure of the focal-conic domain and then take a
Fi v @ v 7T 1 L s+ 07 T closer look at the center of the spiral and on the border be-
|l 1 ¢+ ¢ 7= T | 1 1+ @ 7 T | tween the focal-conic and the planar domains.
I L 1+ @ T T | 1L + @ T T 1 .The cholesjenc planeg are arranged in the form of a cone
© with a superimposed spiral structure. A three-dimensional

surface representing one cholesteric plane is shown in Fig. 9.
A section through the center is given in Fig. 10, showing an

FIG. 8. A cholesteric phase with homeotropic boundary condi-inclination of the planes by the angte Due to the continu-
tions: (a) The director rests in a plane. This is not compatible with ous screw axigFig. 9), a half plane with index 1 appears
the molecular field20]. (b) The director turns out of the plane in after a rotation ofr, translated byp,/2, on the other side of
order to fulfill the molecular field requiremenf0]. (c) The di-  the center so that the whole structure can be generated start-
rector distribution at the free surface. The equilibrium relief resultsing from two half planes. Indeed, a cut perpendicular to the
from the competition between the surface energy and the bulk fregone axis(the free surface in Fig.)Ireveals two cholesteric
energy. planes.

From the discussion in Sec. IV B it follows that the two
defect lines are of tha™ type. In the bulk these lines wind

In this article we do not attempt to give a complete dis-around each other like two twisted threads. Figure 11 shows
cussion of this relief, which is done {19], but we want to  the director distribution in they plane. This plane cuts the
present a qualitative description of the resulting director distwo defect lines. The cholesteric planes are inclined by the
tribution that is necessary to develop the focal-conic strucangle G<a<w/2. A cut containing the central axis is shown
ture that follows in Sec. IV C. Let us begin with the consid- in Fig. 12, representing a rather complex distribution.
eration of a flat surface with homeotropic boundary
conditions[20]. A first attempt to sketch the director distri-
bution is shown in Fig. &). But this is not the real situation,
because it does not fulfill the molecular field requirements.
Figure 8b) shows a structure that is compatible with the
molecular field[20]. If now the boundary conditions are al-
tered in order to allow for a free surface, the system can
reduce its free energy. The equilibrium relief results from the
competition between the surface energy and the bulk free
energy. The proposed structure is sketched in Fig. 8

The real situation is more complex because of the greater FIG. 10. Model of the cholesteric focal conic domains. The
periodicity of the free surface structu(&95 nnj, compared figure shows a cut along the center of the cone. Note that the exact
to the helical pitch(145 nnj, but for the following it will be  structure of the center is neglected in this sketch.

B. Periodic surface relief due to the cholesteric helix
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FIG. 11. Director distribution of a double spiral possessing two  FIG. 13. The director distribution at the border between the two
N\ defects. The helix axis makes an angle 9@°with the figure  domains. The director field is continuous, but possesses the helical
plane, i.e., the cholesteric planes are inclined with respect to thpitch p.= p,/cog«/2) at the border.
center.

distribution of the border is sketched in Fig. 13. Note that the
Far away from the center the cholesteric planes are clearlgeriodicity along the cone border is neithgg nor p,, but
visible, but if the center is approached this notion becomep.= py/coga/2). Figure 14 shows the director field along a
somewhat diffuse because twist deformations exist in severaircle around the center of the cone at constant height, not
directions. If we look exactly at the center there is again &ollowing the screw axis. Due to this axis, the director dis-
twist axis that is fairly visible. Here are two points to note: tribution does not possess a circular symmetry. It can easily
the periodicity is nop, but p,,= py/cosa due to the inclina- be seen that there exists no difficulty for the director to be fit
tion of the cholesteric; and the twist sense is the same as fanto the planar structure that is sketched in the outer circle.
the undistorted phase. Therefore, there are no discontinuities in the director field.
The two defect lines ok type are regularly cut by this Neither is there a discontinuity in the twist fiefdhich in-
plane, although they are not clearly visible. This is not reallydeed possesses in both domains a cylindrical symmetoy
surprising because this sort of defect shows no discontinuityhat there are no disclinations on the domain border.
in n, only for the twistt. As defect lines cannot simply stop in the bulk phase, we
Let us now look at the embedding of the focal conic do-must conclude that the two™ lines meet at the lowest point
main in the bulk planar texture. As the periodicities along the
z axis are differen{py, vs py), the surface between the two
domains cannot be arbitrary, but has to fulfill a geometric -~ -
constraint. As can be seen in Fig. 10, the cholesteric planes - -

of the two respective domains can adapt themselves if the - = -
. . . - - - -
slope of the domain border i§=a/2. The exact director “T e, T _
- L1 L4 [
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FIG. 12. The director distribution in the plane of Fig. (er- FIG. 14. Director distribution at the border between the two
pendicular to Fig. 1jlthat contains the central axis of the cone domains, cut perpendicular to the cone axis. The index of the sum
(marked in the figure The two entangled* defects lines cross this  of the two\™ lines isS=0. The focal-conic domain can adapt itself
plane regularly and are also marked. Note that the director in thaithout singularity to the outer planar texture, which is sketched in
central axis is twisted along this axis, with periodicy. the outer circle.
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FIG. 16. The director distribution in a plane that contains the
central axis. In this figure the rotation sense of the screw axis is
reversed, resulting in a different director distribution as in Fig. 12.
The twist sense at the center is inverse to the molecular twist.

(b)

FIG. 15. (a) Director distribution of a plane parallel to the one in
Fig. 12, but at a distancé>py/4. The plane shown does not con-

the center of the spiral, which is certainly unfavorable with
respect to energetic considerations. This can be seen in Fig.
tain the central axis. The twh defects are not cut by this plane, 16 showing a cut along the central cone axis. The structure
either.(b) The same plane as i@, but her.e. the cholesteric plangs of the border of the two domains is also altefede Fig. 17.

are sketched. The appearance of an additional plane does not implyiscjination lines have to appear on the surface in this direc-
defects on the cone border. tor configuration.

Given the focal conic and the planar domains, we can
of the focal conic domain, i.e., there is only one defect lineconstruct a second possible orientation Il of the two struc-
entwined around itself, starting and ending at the surface, iiures by turning the focal cone througharound a horizontal
the center of the cone. axis. This is shown in Fig. 18. The spiral rotation sense at the

An example of how complex the director distribution can surface has changed. Note, however, that the slope angle of
become is given in Fig. 18), which shows a vertical cut the domain border is given by, =(7—a)/2 and that there-
parallel to the central axis but at a distardte p,/4 away fore the focal-conic domain has a different shape, while in
from it. While the cholesteric structure is fairly visible in the the first model the cone was flat, we now have a peaked
right- and left-hand parts of the figuteholesteric plangsit ~ cone. Note that this structure yields the same surface angle of
is complicated in the central part, although the cut shows &he helix axist (neglecting the small height of the cone at the
region far away from the center. This complexity is due tofree surface However, we can exclude this structure by ex-
the fact that the helix axis does not make a constant angleerimental evidence. Imagine an oblique cut through the two
with the figure plane. Whil¢ is (more or lessparallel to the ~ structures show(Figs. 10 and 1B Only in the first case, the
figure plane at the right- and left-hand sides of the picture, iBngle between the helix axis and the cut plane is in accor-
includes the angle: with it in the middle part. Note that one
plane at a definite heiglatat the right figure border is, when
following the cholesteric plane, transferred to a height
z+py/2 at the left border. Figure 1B) shows the same cut,
but in the notation of cholesteric planes. If the conical cho-

lesteric structure is cut parallel to the center, the form of the - e Ty -
cholesteric planes is that of hyperbolas, although slightly de- - it RN " -
formed through the superimposed spiral structure. The screw _ NN L A y ! -
axis seems to introduce a new plane on the left-hand side of - : - "‘ ¢ « ’“\ Y ‘( -
Fig. 15b), implying some defects. Following the above ar- - - : "« 4. -
guing there are no defects, thus demonstrating that the pic- - “ T, I -
tural description of a cholesteric phase as a layered structure - » 'T Yol rot s -
is indeed misleading. ~ s TP S & =
_ . N N 4, - ~ . 4 ' _
D. Alternatives - AP R L -
- L " A -

There exists a further possibility for constructing a helical
cone resulting in a spiral surface structure. Beginning with
the spiral in Fig. 11, we could have changed the rotation
sense of the screw axis.

The cholesteric is arranged in a way similar to our first F|G. 17. Director distribution at the border between the two
model, i.e., the planes are inclined by the angl@ith re-  domains, cut perpendicular to the cone axis, for the case of the
spect to the planar texture. Yet the structure is different fromnverted rotation sense. The defect indexSis2. The focal-conic
the first model. The rotation sense of the surface spiral hagomain cannot adapt itself without additional singularities to the
changed, as has the rotation sense of the twist deformation wuter planar texture which is sketched in the outer circle.
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The combination of two line defects in media with non-

Abelian fundamental groups can vyield different results, de-

/N pending on how the two defects are surrounded by a loop
\/
\/

with respect to a third defect line. As in our case there is no
A third defect, the reason for the two different results seems to

\/ be the way in which the two defect lines are twisted around
\/ each other. This means that we have to bring jndefect of
N/ .

VA

index S=2 from infinity to deform the two helicoidal ar-
rangements with different helix rotation sense into one an-
other. In any case, the two valu8s-0 andS=2 are consis-
tent with the results that can be read from the class
multiplication table for cholesteric defedt24].

Experimental investigations of pairs of twisted defects

FIG. 18. A second possibility to fit a focal-conic domain in the were already made if25,26]. For some combinations, the
planar structure. Note that the form of the cone is different fromyyo defect lines were topologically not equivalent, even if
that in Fig. 10 although the helix axis makes the same angle withhey \were of the same type. However, for our case the two
the free surface, if one neglects the very flat cone of the free sullines are equivalent, showing again the great variety of pos-
face. sible structures of the cholesteric phase.

dance with the experimental situation, i.e., is greater in the . o
region between the free surface and the center than in the F. Energetic estimations
other region(cf. Sec. lll Q. Energetic estimations will also In general, the structure of a mesogenic phase should re-
give some evidence for the exclusion of the second structurgult from the minimization of the free energy. But this is
already quite complex for nematics unless the one-constant
E. Helicoidal generation of pairs approximation is used or the director is constrained to lie in

A helicoidal arrangement of defect lines has already beef plane. For cholesteric phases, this becomes still more dif-

considered in detail ifi21,22, whose structure is generated Ilocil)t(t?:; tt?]g]f?egv":rté? strflrJgrt#rf(iar.s;l'hcr-:}gifiorltea,svgﬁthl\llgc;totrrg/e
by turning a two-dimensional pattern around a screw axis, . .. ergy P P 9
estimations concerning the model.

For reasons of continuity, the perl_od|C|ty of the screw axis is To begin with the bulk energy, let us assume for the di-
an integer multiple of the half helical pitch, So .
rector distribution(see Fig. 1D

p=1/2mpy, ©) COSa COS ¢ cos f—sin ¢ sin 6
wherem is taken to be positive if the rotation sense of the n=| Cosa sin ¢ cosf+cos¢ sin g |, (6)
screw axis is the same as that for the molecular twist. It can sin « cos 6

easily be shown that the resulting defect ig Bne of index
where « is the angle of inclinationg the azimuthal angle,

S=1-3zm. (4) and 0 the angle describing the helical twist, whose value is
iven b
Note that there exist no defects for=2. The center of the J y
defects can be dissociated in pairs(®fr) defect lines, turn- o
ing in a helix around the central axis, and various combina- 6= o z’, ()
h

tions of different periodicities inside and outside of the cen-
tral region can be construct¢dl,22,.

Thus our model resembles the above structures, which we 2'=7—r tan a— mpn (27— ) ®)
can identify with the casen=2, S=0 (andm=-2, S=2 for 2 ’
the case of the inverse screw gxiThe two-dimensional
patterns generated can be seen in Figs. 12 and 16. The addi- ¢=arctanfy/x), 9
tional inclination of the planes change the periodicity of the
central region to r=x2+y2. (10)
lpn= MPo _ (5) Note thatz’' =const is an implicit equation for the cholesteric
2 cosa planes of Fig. 9. The gradient terms for the three types of

) . elastic deformation are obtained from this director distribu-
Naturally, our model does not yield an undisturbed cholestion After some lengthy calculations we arrive at

teric for m=2 becausex#0, but the structure resembles it

most(cf. Fig. 14. Note that we arrive at the expected index (m—2)2 co? 4 cof
S=0, if we follow the director distribution on the circle, but (V-n)’= a2 , (11
a valueS=2 results from Fig. 17 fom=-2.
The starting disclinations are in both cases twolines i 0 sir?
inati i di i si sin’ «
but the combination of the two defects is different. This (n-V Xn—2m/pg)2= (12)

might be interpreted in terms of homotopy group thd@§]. 4r? '
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FIG. 19. Plotfr2/ks=f(a) [Eq. (11)] showing the dependence

of the splay deformation free energy density on the anrgl&@he
parametem determines the periodicity of the screw axis.

4 sirf 0 sir? a+(m—2)2 sir? 6 cos «a
4r? '
(13

(NXVXn)2=
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FIG. 21. Plotf ,r%/ky,=f(a) [Eq. (13)] showing the dependence
of the bend deformation free energy density on the amgl&he
parametem determines the periodicity of the screw axis.

m=1, 2, and 3 the full free energy density is lower for small
anglesa, while for the other values ofm the situation is
inverse, for usual values &, k;, andk,. Note that the
distortion energy is zero in the case mt=2 and =0, be-

To eliminate the dependence @nthe distortions are aver- cause this corresponds to the ideal cholesteric.

aged over the periodicity,, along thez axis. Due to the

Comparing the free energies for=2 andm=-2, it can

symmetry of the problem, the dependence on the azimuthdde seen that the inversion of the screw axis rotation sense not

angle ¢ (via 6) vanishes, too.

, . (m=2)%cos a
fo=ky(V-n)?=ks ———op—, (14
8r
Sir? a
fi=k(n-VXn—2m/py)?=k; a7 (15)
3sirf a+(m—2)2 cos a
fo=Kp(NX VX N)2=k, 812 .
(16)

The dependences of the deformation energiesxcere
shown in the Figs. 19splay), 20 (twist), and 21(bend. For

0.14

012 |
0.10

0.08

/K

0.06

0.04

0.02

0.00

PR S S RS
0.0 0.5 1.0 1.5
a (rad)

FIG. 20. Plotf,r?/k,=f(a) [Eq. (12)] showing the dependence

of the twist deformation free energy density on the angleThe
parametem determines the periodicity of the screw axis.

only alters the center of the cone but also results in a differ-
ent energetic situation.

In the following we shall only consider the situation
m=2. The bulk energy density can in this case be written as

fi=ki ——, (17)

wherek; = 1/8k; + 3/8k;, , while there is no splay deformation.

An additional distortion energy appears on the border be-
tween the focal-conic and the planar domains because the
cholesteric planes are befsiee Fig. 13 Numerical calcula-
tions[19] lead to the following approximation:

fc:kc(pc/po_l)z’ (18)

wherek, is an effective elastic constant that can in principle
be derived from the values &f, ky,, andp.

As the director distribution in the center of the cone is
rather complex, we can only give an assumption, similar to
Eq. (18), using as an indication the helical twist in the center
of the cone:

fh=Kn(Pn/pPo—1)2. (19

The two situations of Figs. 1@nodel ) and 18(model II)
possess the same bulk energy denfitybut the geometrical
dimensions are different. Neglecting again the very flat coni-
cal shape of the free surface, the height of the cone is given
by (k=1,11):

hy=r tan ¢ (20)
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FIG. 22. PlotF;=f(a) [Eq. (21)] showing the dependence of

the bulk free energy on the anghefor the two models | and I1. All
other parameters are held constant.

o (rad)

FIG. 24. PlotF,=f(a) [Eq. (23)] showing the dependence of

the free energy of the cone center on the argler the two models

I and Il. All other parameters are held constant.

with €=a/2 ande, =(m—a)/2, respectively. The cone radius energy. Thus there has to be a gain in free energy. This
is r. Integrating over the volume of the cone, the area of itg,omes from the anchoring energy at the free surface. After
mantle and the length of the central defect line, we arrive ajytegrating Eq(2) over the surface area the free energy gives

the following free energies:
Fi =2k sir? a tan {r[In(r/ro)—1]+rq}, (22

(1-sing)®

Fek™ e Cose, sif e 2

(1—cosa)?

coLa 23

Fh,k: kh tan g,

F¢=— ks coS(m/2— a— £y)r2. (24)

The dependence onis not the same for the appearing
energies, so the angle of inclination should dependron
when calculated from the minimization process. However,
this gives only a transcendental implicit expression that can-
not be solved explicitly fora, even if only the absolutely
necessary terms are taken into account. However, different

The radius of the cone centerrig. Plots of the deformation values of« lead to different periodicitiep; of the relief at
energies; , F., andFy, for the models | and Il can be seen the free surface due to the cholesteric helix. Although we

in Figs. 22, 23, and 24.
We conclude thaF;>F .+ F becausd; is a bulk term

observe some variations fpr , we do not see a statistically
significant dependence onThis leads to the conclusion that

and the two other terms concern regions of a much smallethe surface anchoring is rather strong and determines the

volume. Experimentally we have the cage0, so that all

value of @, being ay=n/2—&,. The variations irp; are then

energies are finite; note also that the director distribution isttributed to the fact that none of the cones examined is
continuous throughout the space. Therefore model | gives theeally perfect. Our measurements gig=arccosf,/p;)
lowest energy of all considered alternatives. But an undis=37°, «=53°, andg=26°. From the inequalityF|>|F;|
turbed planar texture possesses nonetheless the lowest fr@e can calculate a lower boundary fqr; usingr =2500 nm,

soF

[ model |
25 | ~--- model Il
20 |

15 F

F. (arb. units)

05|

0.0 pmmm=smmzmepoopogogoepemmmgmm T ]
0.0 0.5 1.0 15
o (rad)

ro=po/4=73 nm, and k;=3x10"’" dyne, results in
k;>6Xx10 % dyne cm .

Another consequence of the different dependerdges is
that the gain in free energy is greater when the domains
become larger, thus they should increase with time. The
growth stops only when the two domains meet. Another pa-
rameter that imposes a barrier for the domain radius is the
thickness of the sample. When the bottom of the cone arrives
at the other surface, the domain growth effectively stops,
because the reorientation time for the director at this surface
is of a much greater time scale. These considerations are
indeed in agreement with the experimental findifgge Sec.
lA).

A last estimation shall be made with respect to the height
of the free surface cone. Still assuming that the surface an-
choring is very strong, the bulk free ener§y can be re-

FIG. 23. PlotF.=f(a) [Eq. (22)] showing the dependence of duced by inclining the free surface, yielding a cone at the

the cone border free energy on the anglr the two models | and
1. All other parameters are held constant.

free surface. Neglecting gravitational terms, the free energy
is given by(only taking the absolute necessary teyrms
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F=F+F, (25
f i

=my1+tart p(y—ke)r2+k; sif(ag— n)

Xtan (ag— n)/2]rIn(r/ry), (26)

where 7 is the surface cone angle andis the surface ten- %
sion. Note that the factor ctisr/2—a,—&y) of Eq. (24) is 1

for optimal anchoring. In order to get an approximation we

develop the free energy in powers gf(up to second order

and minimize. This gives :

2l

2k;(cos a—cos )In(r/rg) @

(27)

7

T 7(y—K)r +k(2 sin 2x—sin a)In(r/rg)

To SimP”fy the dependence(r_) we ne_gle(_:t all ter_ms of the FIG. 25. Location of the cholesteric focal-conic domains at the
denominator other than the first, which is considered 0 b ee syrface in relation to the general focal-conic structure.

predominant. Also taking into accoupt>|kd|, we can esti-
mate the inclination angle. Using=40 dyne cm® gives  alized structure lies between two sorts of focal conics. Nor-
7=3%10"%. This value is too low compared with the ex- mally only focal conics of the first kind are observed, where
perimental findings. Too many nonjustified assumptionghe Gaussian curvature is negativep,<0, o7 %; and 05!
have probably been made during the development of the agre the radii of curvature. The layers have therefore a hyper-
proximation, especially thaF;>F.+F, . Including F, in bolic shape. But a second possibility for constructing a focal
Eqg. (25 will probably increase the angle. Another pointis  conic shows the inverse curvatusgs,>0; the layers have
that we have used values for monomeric substances in then elliptic shapg27]. The second kind is only very rarely
absence of proper ones for our oligomeric material. Equatiombserved 28]. In the ideal case, we havgo,=0 (parabolic
(27) is obtained by using only the predominant ternFpfor ~ shapg, but deviations from its structure may appear in both
large radii. In this regiony(r) is a decaying function. Our directions(see Fig. 2& Note, however, that a circular cone
experimental results, however, do not allow a definitive conwith constant slope anglesande and nonvarying;(r) and
clusion for this behavior, due to the great statistical variap.(r) is only possible foir,0,=0. Thus the deviations from
tions. the ideal case cannot be very large, because we observe no
variations either irp;(r) or in #(r). In our model,oy0,=0
G. Focal-conic domains for the cholesteric planes in both the focal-conic and planar

omains lead also to the vanishing of the Gaussian curvature

Defec;s appear in a layered system of parallel surfaces %r the domain bordés). The geometrical form of the sur-
those points where different layer normals cut each other. I[Face focal-conic domains is therefore quite regular. In our

the. general case, these points construct surfaces. For e.n%rﬁinion, this is due to the planar texture of the bulk that
getical reasons, the system will develop a structure that m'n'fmposes “clear” conditions for the border and the central

{nlzes tEe re%lo][]s tOf deffects. gh's glvest thte f?cal-conlc XGefects. Only once was a different spitBdurfold) found. In
ure, where aefect surfaces degenerate 1o two CUIVES, aly ey cases we observed the usual double spiral.

ellipse, and a hyperbola. They pass through the focii of eac In the general case, when two focal-conic domains meet,

other, th'e planes in which the two curves are located .bemglefects may appear on the border and the central defect lines
perpendicular to one another. The local layer normal is al-

ways parallel to the unique straight line that cuts both the
ellipse and the hyperbol22].

In our case, the two defect curves are a circle and a
straight line. The model cuts out a part of an infinite focal
conic, which is sketched in Fig. 25. The defect line can be
seen in the actual sample while the circle lies outside of the
region that is covered by the domain. Therefore, the physical
constraint for the layer normals to cut each other at the circle
does no longer exist. This defect can relax to any surface,
giving rise to a more general arrangement of the cholesteric
planes. This is the concept of virtual focal surfaf2g)].

However, the observed structure can nonetheless be de-
scribed by a focal-conic arrangement. We have to increase
the distance between the circle plane and our domain to in- (b)
finity to arrive at straight lines for the layers sketched in Fig.

10. Note that we also have to increase the circle radius to F|G. 26. Two sorts of deviations from the idealized structure.
infinity in order to maintain a constant cone angle (a) The Gaussian curvature is positive. This curvature appears very

If we neglect the spiral arrangement of the cholestericseldom.(b) The Gaussian curvature is negative. Most of the focal-
planes and consider only their conical arrangement, our idezonic domains possess this sort of layer curvature.
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may have different indicem and S, respectively. The peri- they can develop locally. Alternative surface structures such
odicities along the surface between two domains can vargs a linear texture need correlations between the cholesteric

and the surface itself may possess a curvatye+0. planes of dimensions much greater than in the case of the
double spirals.
V. CONCLUSION As the full height of the cone is rather small if not cut

] ] ] _exactly in the center, it becomes clear why the focal-conic
In this article we have presented experimental materiajomains are only well visible in oblique cuts. Note also that
concerning AFM examinations of free surfaces and microthe focal conic of Fig. 5 is not embedded in the planar tex-
tome cuts of an oligomeric cholesteric phase. The structurg;re as described by the model. The “bend” of the choles-
of the focal-conic domains that appear spontaneously at th@yic planegFig. 13 is not the way the model predicts. We
free surface has been revealed. The cholesteric planes agpjain this by the fact that the domain border in this case is
have the form of a helicoidal cone. The structure Shows Ngoca| conic domains. This border has other conditions for the
disclinations forn; only in the center of the cone, Wo™  respective director distributions to fulfill. Let us note that we
domains. The whole structure develops because the anchqry as in the modefsee Fig. 7 for an oblique cutHowever,

ing at the free surface favors an oblique orientation of thep jmages of perpendicular cuts the focal-conic domains can
helix axist relative to the surface. The focal-conic structure arely he seen due to their very small height.

is the director distribution of least elastic energy which al-

lows for this surface anchoring together with a bulk planar

structure. The energy is further lowered by transforming the

free surface to a cone with a small cone angtel®, thus We would like to thank F. Livolant and co-workers for

reducing the bulk distortion energy on costs of surface enproviding microtome instruments and cut technique. R.

ergy. Meister is financially supported by the Postdoktorandenpro-
One more advantage of these focal conic domains is thajramm of the Deutsche Forschungsgemeinschatft.
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