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Atomic force microscope examinations of the free surface and of microtome cuts of a cholesteric oligomer
are reported. The obtained images lead to a model of the structure of cholesteric focal conic domains that
appear spontaneously at the free surface. These domains develop in order to fulfill the boundary condition at
the free surface together with a planar bulk texture. Estimations of the free energy confirm this model.
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I. INTRODUCTION

Atomic force microscope~AFM! @1# investigations are
useful methods of exploring surfaces that are not flat, espe-
cially in the case where the resolution of optical methods is
not sufficiently high. In this regard, liquid crystal phases are
interesting topics because they can have nonplanar surface
structures that are very small in amplitude. An example
shown by de Gennes@2# is a periodic system of grooves and
hills that should appear at the free surfaces of nematic liquid
crystals with homeotropic boundary condition submitted to a
horizontal magnetic field. Another example of surfaces that
are not flat are liquid crystals where defect lines start and/or
end at the free surface. These reliefs have been successfully
examined by AFM@3#. There exist also investigations on
smectic phases@4,5#.

Cholesteric phases show a very great manifold of possible
surface structures@6#, depending on several parameters, such
as the thickness of the liquid crystal layer and the thermal
treatment of the sample. The topology of the system choles-
teric plus homeotropic boundary condition requires the intro-
duction of systems of disclinations. These can be arranged in
several ways, leading to the great number of different struc-
tures. In particular, a double-spiral conical relief correspond-
ing to a focal-conic texture was observed@6# ~see Fig. 1!.

In all these examples the investigated material had to be
sufficiently stiff in order to be examined by AFM methods.
But with the synthesis of new oligomer and polymer sub-
stances a number of useful samples are available. The mate-
rial usually possesses a glass transition at elevated tempera-
ture and can be investigated in the frozen state at room
temperature without difficulty. But even swallow-tailed mol-
ecules can be successfully examined in their smectic states
@5#. This is due to the ‘‘tapping mode’’~registered trademark
of Digital Instruments! of the AFM where the probing tip is
placed at the end of a vibrating cantilever. The sample inter-
acts with the tip only when the cantilever is at the lowest
position of the vibration cycle. By this the interaction energy
is reduced to a minimum.

A method of getting information about the bulk structure
of mesophases is via microtome cuts or freeze fractures. The
samples can be examined by polarization microscopy@7,8#
or electron microscopy@9–12#. But surfaces produced by a
freeze fracture process are known to possess a relief due to

the anisotropic propagation of the fracture@13# and also sur-
faces created by the action of a microtome knife in quenched
liquid crystals have a topography that depends on the texture
of the cut material. Therefore, the microtome cuts can be
explored by AFM. Examples of these investigations are cho-
lesteric@11# and blue phases@14#.

In this article we will report about AFM investigations of
the free surface and of microtome cuts of a cholesteric oli-
gomer. These two surfaces give complementary information
on the cholesteric texture and allow us to resolve the three-
dimensional structure of the cholesteric focal-conic domains.

II. EXPERIMENT

In our examinations we used the following siloxan oligo-
mer supplied by Wacker Chemie, Germany via J.-M. Gilli
~3<n1m<7!:

FIG. 1. An AFM image of the free surface of the cholesteric
focal-conic domains at the free surface. All double spirals show the
same sense of rotation and possess a conical form with the center at
the highest position~image length 10 381 nm!.
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The ratio of the two different mesogenic side chains at-
tached to the cyclic structure controls the helical pitch. Our
experimental work is based on that oligomer with an equal
ratio of the chiral and the achiral side chain. The half helical
pitch of this material is 145 nm@15#. Note the glass transi-
tion at 50 °C that allows us to investigate the cholesteric
phase with the AFM in the rigid glassy state.

In order to produce the focal-conic surface structure the

substance was put onto a substrate and heated to 120 °C. By
means of shearing the cholesteric phase was orientated into a
planar configuration. The focal conic surface structure devel-
oped spontaneously at the free surface while the sample was
placed for 2 min in an oven at 140 °C. After taking the
sample out of the oven and letting the temperature decrease
to room temperature, the focal conic surface structure was
frozen in the glassy state.

The exploration of the free surface was made with glass
as support. It showed a planar boundary condition, which is
favorable with respect to the intermediate structure of the
sample.

In order to be cut by a microtome, the support for these
samples cannot be glass, but has to be a material that can be
easily cut. Therefore we used ‘‘Araldite,’’ a commercial
resin especially optimized for microtome use. The boundary
conditions are not as simple as with glass. The resulting
structure of the flat surface cholesteric/resin depends~like the
free surface! on several parameters, such as the thickness of
the liquid crystal layer, the rubbing of the substrate, and the
thermal treatment of the sample. But as the time scale of the
transformations to the preferred state is rather long, we ar-
rived at samples that showed the focal-conic structure at the
free surface, while the boundary at the other surface was still
planar.

The samples were prepared in the following way: Flat
resin plates were made by polymerizing it between two par-
allel glass plates at 60 °C for 2 d. Afterwards, the cholesteric
phase was put on these flat supports. The whole sample was
then put into a compact block of~still liquid! resin and this
was once again polymerized at 60 °C for 2 d.

The samples were cut with a microtome either perpen-
dicular or oblique to the free surface. The thickness of the
cuts varied between approximately 70 nm and 140 nm~see
Fig. 2!.

III. RESULTS

A. Free surface

The surface of the cholesteric focal conic domains is
shown in Fig. 1. The helix axis lies more or less parallel to

FIG. 2. ~a! Schematic representation of the microtome cut pro-
cess. The sample is cut by a diamant edge and the cuts float on the
water surface after the cut. Only the upper sides of the cuts were
examined in our experiments.~b! The geometry of the samples.
There are two surfaces cut by the microtome knife: the free surface,
covered with Araldite to suppress convolution effects, and the flat
surface cholesteric/support.
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the free surface, giving rise to a surface structure whose pe-
riodicity is 195 nm, comparable to the half helical pitch. A
relief is shown in Fig. 3; the height is about 4 nm, leading to
a mean slope of 2°. The form of the top region is different
from that of the bottom, showing different radii of curvature.
In the focal conic structure the ‘‘cholesteric~half-! planes’’
are arranged in the form of a double spiral, ending in the
center of the spiral. Here two defect lines approach the sur-
face, either twol1 or two t1 lines.

For thin samples, the diameter of the spiral is~roughly!
proportional to the thickness of the liquid crystal layer. But if
the height of the layer is sufficiently large, there seems to be
a maximal value of the spiral diameter. A section through the
center of the helix~Fig. 4! reveals that the three-dimensional
surface is a cone, whose diameter is~in this case! 5 mm, and
whose height is 9 nm, which results in an average slope of
1°.

Note that in Fig. 1 the two curves of the crests finish at the
top of the cone while the groove line is continuous. Note also

that all spirals possess the same sense of rotation.

B. Perpendicular microtome cut

A microtome cut of the cholesteric phase is shown in Fig.
5. The relief due to the cholesteric pitch is quite semblant to
that of the free surface, although it is obtained by a totally
different process. The height of this relief depends on the
thickness of the microtome cuts; the thinner the cuts are the
greater the structure becomes. A section is given in Fig. 6,
showing that here the mean height is about 8 nm, while the

FIG. 3. A section of the surface structure due to the helical
twist. Note that the length scale of thez axis is considerably smaller
than that of thex axis.

FIG. 4. A section of the cholesteric focal-conic domains, cut
through the center of the cone. The periodic structure due to the
cholesteric pitch is superimposed on the conical form. Note that the
length scale of thez axis is considerably smaller than that of thex
axis.

FIG. 5. An AFM image of a microtome cut, perpendicular to the
free surface. The image shows the interface cholesteric/air~the free
surface!. Note that the sample is embedded in Araldite so that the
image actually shows the interface cholesteric/resin. The structure
of the cholesteric phase has not changed during this covering pro-
cess, however. The image shows the oblique orientation of the helix
axis relative to the free surface~image length 2407 nm!.

FIG. 6. A section of the cut surface. The profile height is greater
than in Fig. 3, so that here convolution effects are probably of
greater importance. Note that the length scale of thez axis is con-
siderably smaller than that of thex axis.
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periodicity is 145 nm, being equal to the half cholesteric
pitch. This yields an average angle of 6°. Again, the summits
and valleys show different radii of curvature.

The given periodicity is the minimal value found. Of
course every periodicity greater than the half helical pitch
can be observed if the helical axis is not in the plane of the
cut.

C. Microtome cuts oblique to the free surface

An image of this kind of cut is shown in Fig. 7. The spiral
arrangement of the cholesteric planes in the region of the
focal conic domain is clearly visible. The bulk phase is still
in a planar texture, the periodicity being 174 nm, giving an
approximation for the angle of inclination of 33°, which is in
very good agreement with the estimated value of 30°.

Contrary to the situation at the free surface, here two
groove lines end in the center of the spiral, while the crest
line is continuous. The correspondence between crests and
grooves to perpendicular and parallel orientations ofn with
respect to the surface is therefore inverse to the situation at
the free surface. Note how the focal conic domain is embed-
ded in the planar texture. The helix axis of those cholesteric
planes that lie between the free surface and the center of the
spiral makes a greater angle with the plane of the cut than the
helix axis of those planes that lie on the opposite side of the
center~still in the region of the focal conic domain!.

IV. DISCUSSION

A. Notations ‘‘helix axis’’ and ‘‘cholesteric planes’’

A helical twist axis for cholesteric phases has been de-
fined by several authors, e.g., an implicit vector equation
@16#:

n3~u•“ !n5~2p/p!~u•t!t, ~1!

whereu is an arbitrary vector andt is a unit vector in the
direction of the twist axis. Another definition declares the
helix axis as the eigenaxis with the greatest eigenvalue of the
~two-dimensional! twist tensor@17#.

Describing the cholesteric phases by two vector fields per-
pendicular to each other~n•t50! gives some interesting re-
lation to biaxial nematics and allows a simple classification
of the three defect types in cholesterics. Using a third vector
o5n3t, the defects are classified as follows:

x: t is continuous,n and o are discontinuous

l: n is continuous, t and o are discontinuous

t: o is continuous,n and t are discontinuous.

However the symmetric definition of the three types of
defects does not imply equal distortion energies for the de-
fects.

Although it is sometimes very useful to consider the helix
axis field as a second vector field which helps in understand-
ing the structure of cholesteric phases, we want to stress that
there is in principle no need for the definition of a twist axis,
because the knowledge ofn~r ! alone is sufficient to describe
the cholesteric phase. Another point is that in some circum-
stances the twist axis cannot be defined unambigiously@18#,
for example, in a cholesteric that is completely unwound by
external forces~there is no twist at all! or at the center of the
double twist cylinders, considered in relation to the blue
phases~here the twist is equal in every direction perpendicu-
lar to n!. Analogous comments apply to the notion of cho-
lesteric planes. Neither do we imply any layered structure,
nor any relation between the cholesteric planes at two differ-
ent points that results in a classification of the two points as
‘‘belonging to the same’’ or ‘‘belonging to different planes.’’

We will use the notions ‘‘cholesteric planes’’ and ‘‘helix
axis’’ only in those circumstances where a helix axis can be
defined without any difficulty by either of the two above
definitions ~i.e., configurations that do not deviate strongly
from the ideal cholesteric structure! and this only to avoid
otherwise clumsy formulations.

A cautionary remark shall also be made on the standard
figures of thet andl defects and their combinations in pairs.
The usual images do not give a general director distribution.
The twist axes in these pictures always lie in the figure plane.
Here the observation of an ‘‘additional plane’’ is directly
related to the defects. In our opinion, the one-to-one relation-
ship between the additional plane and defects is no longer
fulfilled in the general case. Both the director and the twist
field may be continuous and there are no defects, even if a
‘‘new plane’’ seems to appear. The consideration of a cho-
lesteric as a sort of layered system is sometimes very mis-
leading.

In the following figures which show director distributions
we will use the convention in which the tips of the pins are
oriented towards the observer. This convention is especially
important for the imagination of two different cuts of the
same three-dimensional director distribution.

FIG. 7. An AFM image of a microtome cut, oblique to the free
surface. The image shows a cut through a focal conic domain, em-
bedded in the planar bulk texture~image length 7000 nm!.
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B. Periodic surface relief due to the cholesteric helix

In this article we do not attempt to give a complete dis-
cussion of this relief, which is done in@19#, but we want to
present a qualitative description of the resulting director dis-
tribution that is necessary to develop the focal-conic struc-
ture that follows in Sec. IV C. Let us begin with the consid-
eration of a flat surface with homeotropic boundary
conditions@20#. A first attempt to sketch the director distri-
bution is shown in Fig. 8~a!. But this is not the real situation,
because it does not fulfill the molecular field requirements.
Figure 8~b! shows a structure that is compatible with the
molecular field@20#. If now the boundary conditions are al-
tered in order to allow for a free surface, the system can
reduce its free energy. The equilibrium relief results from the
competition between the surface energy and the bulk free
energy. The proposed structure is sketched in Fig. 8~c!.

The real situation is more complex because of the greater
periodicity of the free surface structure~195 nm!, compared
to the helical pitch~145 nm!, but for the following it will be

sufficient to describe the surface boundary by a phenomeno-
logical preferred oblique orientation of the helix axis relative
to the surface~see Fig. 5!:

f f52kf~ t•s!
2 or f f52kf cos

2~j2j0!, ~2!

wheret is the helix axis ands is the preferred surface orien-
tation of the cholesteric.

C. Model I

In the description of model I we will begin to discuss the
bulk structure of the focal-conic domain and then take a
closer look at the center of the spiral and on the border be-
tween the focal-conic and the planar domains.

The cholesteric planes are arranged in the form of a cone
with a superimposed spiral structure. A three-dimensional
surface representing one cholesteric plane is shown in Fig. 9.
A section through the center is given in Fig. 10, showing an
inclination of the planes by the anglea. Due to the continu-
ous screw axis~Fig. 9!, a half plane with index 1 appears
after a rotation ofp, translated byph/2, on the other side of
the center so that the whole structure can be generated start-
ing from two half planes. Indeed, a cut perpendicular to the
cone axis~the free surface in Fig. 1! reveals two cholesteric
planes.

From the discussion in Sec. IV B it follows that the two
defect lines are of thel1 type. In the bulk these lines wind
around each other like two twisted threads. Figure 11 shows
the director distribution in thexy plane. This plane cuts the
two defect lines. The cholesteric planes are inclined by the
angle 0,a,p/2. A cut containing the central axis is shown
in Fig. 12, representing a rather complex distribution.

FIG. 8. A cholesteric phase with homeotropic boundary condi-
tions: ~a! The director rests in a plane. This is not compatible with
the molecular field@20#. ~b! The director turns out of the plane in
order to fulfill the molecular field requirements@20#. ~c! The di-
rector distribution at the free surface. The equilibrium relief results
from the competition between the surface energy and the bulk free
energy.

FIG. 9. A three-dimensional surface representing the distribu-
tion of the cholesteric planes in the cholesteric focal-conic domain
at the free surface@this sketch shows a surfacez85const of Eq.~8!#.

FIG. 10. Model of the cholesteric focal conic domains. The
figure shows a cut along the center of the cone. Note that the exact
structure of the center is neglected in this sketch.
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Far away from the center the cholesteric planes are clearly
visible, but if the center is approached this notion becomes
somewhat diffuse because twist deformations exist in several
directions. If we look exactly at the center there is again a
twist axis that is fairly visible. Here are two points to note:
the periodicity is notp0 but ph5p0/cosa due to the inclina-
tion of the cholesteric; and the twist sense is the same as for
the undistorted phase.

The two defect lines ofl1 type are regularly cut by this
plane, although they are not clearly visible. This is not really
surprising because this sort of defect shows no discontinuity
in n, only for the twistt.

Let us now look at the embedding of the focal conic do-
main in the bulk planar texture. As the periodicities along the
z axis are different~ph vs p0!, the surface between the two
domains cannot be arbitrary, but has to fulfill a geometric
constraint. As can be seen in Fig. 10, the cholesteric planes
of the two respective domains can adapt themselves if the
slope of the domain border ise I5a/2. The exact director

distribution of the border is sketched in Fig. 13. Note that the
periodicity along the cone border is neitherp0 nor ph but
pc5p0/cos~a/2!. Figure 14 shows the director field along a
circle around the center of the cone at constant height, not
following the screw axis. Due to this axis, the director dis-
tribution does not possess a circular symmetry. It can easily
be seen that there exists no difficulty for the director to be fit
into the planar structure that is sketched in the outer circle.
Therefore, there are no discontinuities in the director field.
Neither is there a discontinuity in the twist field~which in-
deed possesses in both domains a cylindrical symmetry!, so
that there are no disclinations on the domain border.

As defect lines cannot simply stop in the bulk phase, we
must conclude that the twol1 lines meet at the lowest point

FIG. 11. Director distribution of a double spiral possessing two
l1 defects. The helix axis makes an angle 90°2a with the figure
plane, i.e., the cholesteric planes are inclined with respect to the
center.

FIG. 12. The director distribution in the plane of Fig. 10~per-
pendicular to Fig. 11! that contains the central axis of the cone
~marked in the figure!. The two entangledl1 defects lines cross this
plane regularly and are also marked. Note that the director in the
central axis is twisted along this axis, with periodicityph .

FIG. 13. The director distribution at the border between the two
domains. The director field is continuous, but possesses the helical
pitch pc5po/cos~a/2! at the border.

FIG. 14. Director distribution at the border between the two
domains, cut perpendicular to the cone axis. The index of the sum
of the twol1 lines isS50. The focal-conic domain can adapt itself
without singularity to the outer planar texture, which is sketched in
the outer circle.
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of the focal conic domain, i.e., there is only one defect line
entwined around itself, starting and ending at the surface, in
the center of the cone.

An example of how complex the director distribution can
become is given in Fig. 15~a!, which shows a vertical cut
parallel to the central axis but at a distanced.p0/4 away
from it. While the cholesteric structure is fairly visible in the
right- and left-hand parts of the figure~cholesteric planes!, it
is complicated in the central part, although the cut shows a
region far away from the center. This complexity is due to
the fact that the helix axis does not make a constant angle
with the figure plane. Whilet is ~more or less! parallel to the
figure plane at the right- and left-hand sides of the picture, it
includes the anglea with it in the middle part. Note that one
plane at a definite heightz at the right figure border is, when
following the cholesteric plane, transferred to a height
z1ph/2 at the left border. Figure 15~b! shows the same cut,
but in the notation of cholesteric planes. If the conical cho-
lesteric structure is cut parallel to the center, the form of the
cholesteric planes is that of hyperbolas, although slightly de-
formed through the superimposed spiral structure. The screw
axis seems to introduce a new plane on the left-hand side of
Fig. 15~b!, implying some defects. Following the above ar-
guing there are no defects, thus demonstrating that the pic-
tural description of a cholesteric phase as a layered structure
is indeed misleading.

D. Alternatives

There exists a further possibility for constructing a helical
cone resulting in a spiral surface structure. Beginning with
the spiral in Fig. 11, we could have changed the rotation
sense of the screw axis.

The cholesteric is arranged in a way similar to our first
model, i.e., the planes are inclined by the anglea with re-
spect to the planar texture. Yet the structure is different from
the first model. The rotation sense of the surface spiral has
changed, as has the rotation sense of the twist deformation in

the center of the spiral, which is certainly unfavorable with
respect to energetic considerations. This can be seen in Fig.
16 showing a cut along the central cone axis. The structure
of the border of the two domains is also altered~see Fig. 17!.
Disclination lines have to appear on the surface in this direc-
tor configuration.

Given the focal conic and the planar domains, we can
construct a second possible orientation II of the two struc-
tures by turning the focal cone throughp around a horizontal
axis. This is shown in Fig. 18. The spiral rotation sense at the
surface has changed. Note, however, that the slope angle of
the domain border is given byeII5~p2a!/2 and that there-
fore the focal-conic domain has a different shape, while in
the first model the cone was flat, we now have a peaked
cone. Note that this structure yields the same surface angle of
the helix axist ~neglecting the small height of the cone at the
free surface!. However, we can exclude this structure by ex-
perimental evidence. Imagine an oblique cut through the two
structures shown~Figs. 10 and 18!. Only in the first case, the
angle between the helix axis and the cut plane is in accor-

FIG. 15. ~a! Director distribution of a plane parallel to the one in
Fig. 12, but at a distanced.p0/4. The plane shown does not con-
tain the central axis. The twol defects are not cut by this plane,
either.~b! The same plane as in~a!, but here the cholesteric planes
are sketched. The appearance of an additional plane does not imply
defects on the cone border.

FIG. 16. The director distribution in a plane that contains the
central axis. In this figure the rotation sense of the screw axis is
reversed, resulting in a different director distribution as in Fig. 12.
The twist sense at the center is inverse to the molecular twist.

FIG. 17. Director distribution at the border between the two
domains, cut perpendicular to the cone axis, for the case of the
inverted rotation sense. The defect index isS52. The focal-conic
domain cannot adapt itself without additional singularities to the
outer planar texture which is sketched in the outer circle.
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dance with the experimental situation, i.e., is greater in the
region between the free surface and the center than in the
other region~cf. Sec. III C!. Energetic estimations will also
give some evidence for the exclusion of the second structure.

E. Helicoidal generation of pairs

A helicoidal arrangement of defect lines has already been
considered in detail in@21,22#, whose structure is generated
by turning a two-dimensional pattern around a screw axis.
For reasons of continuity, the periodicity of the screw axis is
an integer multiple of the half helical pitch,

p51/2mp0 , ~3!

wherem is taken to be positive if the rotation sense of the
screw axis is the same as that for the molecular twist. It can
easily be shown that the resulting defect is ax line of index

S512 1
2m. ~4!

Note that there exist no defects form52. The center of the
defects can be dissociated in pairs of~l,t! defect lines, turn-
ing in a helix around the central axis, and various combina-
tions of different periodicities inside and outside of the cen-
tral region can be constructed@21,22#.

Thus our model resembles the above structures, which we
can identify with the casem52, S50 ~andm522, S52 for
the case of the inverse screw axis!. The two-dimensional
patterns generated can be seen in Figs. 12 and 16. The addi-
tional inclination of the planes change the periodicity of the
central region to

1
2ph5

mp0
2 cosa

. ~5!

Naturally, our model does not yield an undisturbed choles-
teric for m52 becauseaÞ0, but the structure resembles it
most~cf. Fig. 14!. Note that we arrive at the expected index
S50, if we follow the director distribution on the circle, but
a valueS52 results from Fig. 17 form522.

The starting disclinations are in both cases twol1 lines
but the combination of the two defects is different. This
might be interpreted in terms of homotopy group theory@23#.

The combination of two line defects in media with non-
Abelian fundamental groups can yield different results, de-
pending on how the two defects are surrounded by a loop
with respect to a third defect line. As in our case there is no
third defect, the reason for the two different results seems to
be the way in which the two defect lines are twisted around
each other. This means that we have to bring in ax defect of
index S52 from infinity to deform the two helicoidal ar-
rangements with different helix rotation sense into one an-
other. In any case, the two valuesS50 andS52 are consis-
tent with the results that can be read from the class
multiplication table for cholesteric defects@24#.

Experimental investigations of pairs of twisted defects
were already made in@25,26#. For some combinations, the
two defect lines were topologically not equivalent, even if
they were of the same type. However, for our case the two
lines are equivalent, showing again the great variety of pos-
sible structures of the cholesteric phase.

F. Energetic estimations

In general, the structure of a mesogenic phase should re-
sult from the minimization of the free energy. But this is
already quite complex for nematics unless the one-constant
approximation is used or the director is constrained to lie in
a plane. For cholesteric phases, this becomes still more dif-
ficult due to the twisted structure. Therefore, we will not try
to extract the free energy from first principles but give some
estimations concerning the model.

To begin with the bulk energy, let us assume for the di-
rector distribution~see Fig. 10!

n5S cosa cosf cosu2sin f sin u
cosa sin f cosu1cosf sin u

sin a cosu
D , ~6!

wherea is the angle of inclination,f the azimuthal angle,
andu the angle describing the helical twist, whose value is
given by

u5
2p

ph
z8, ~7!

z85z2r tana2
mph
2

~2p2f!, ~8!

f5arctan~y/x!, ~9!

r5Ax21y2. ~10!

Note thatz85const is an implicit equation for the cholesteric
planes of Fig. 9. The gradient terms for the three types of
elastic deformation are obtained from this director distribu-
tion. After some lengthy calculations we arrive at

~“•n!25
~m22!2 cos2 u cos2 a

4r 2
, ~11!

~n•“3n22p/p0!
25

sin2 u sin2 a

4r 2
, ~12!

FIG. 18. A second possibility to fit a focal-conic domain in the
planar structure. Note that the form of the cone is different from
that in Fig. 10 although the helix axis makes the same angle with
the free surface, if one neglects the very flat cone of the free sur-
face.
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~n3“3n!25
4 sin4 u sin2 a1~m22!2 sin2 u cos2 a

4r 2
.

~13!

To eliminate the dependence onu, the distortions are aver-
aged over the periodicityph along thez axis. Due to the
symmetry of the problem, the dependence on the azimuthal
anglef ~via u! vanishes, too.

f s5ks~“•n!25ks
~m22!2 cos2 a

8r 2
, ~14!

f t5kt~n•“3n22p/p0!
25kt

sin2 a

8r 2
, ~15!

f b5kb~n3“3n!25kb
3 sin2 a1~m22!2 cos2 a

8r 2
.

~16!

The dependences of the deformation energies ona are
shown in the Figs. 19~splay!, 20 ~twist!, and 21~bend!. For

m51, 2, and 3 the full free energy density is lower for small
anglesa, while for the other values ofm the situation is
inverse, for usual values ofks , kt , and kb . Note that the
distortion energy is zero in the case ofm52 anda50, be-
cause this corresponds to the ideal cholesteric.

Comparing the free energies form52 andm522, it can
be seen that the inversion of the screw axis rotation sense not
only alters the center of the cone but also results in a differ-
ent energetic situation.

In the following we shall only consider the situation
m52. The bulk energy density can in this case be written as

f i5ki
sin2 a

r 2
, ~17!

whereki51/8kt13/8kb , while there is no splay deformation.
An additional distortion energy appears on the border be-

tween the focal-conic and the planar domains because the
cholesteric planes are bent~see Fig. 13!. Numerical calcula-
tions @19# lead to the following approximation:

f c5kc~pc /p021!2, ~18!

wherekc is an effective elastic constant that can in principle
be derived from the values ofkt , kb , andp0.

As the director distribution in the center of the cone is
rather complex, we can only give an assumption, similar to
Eq. ~18!, using as an indication the helical twist in the center
of the cone:

f h5kh~ph /p021!2. ~19!

The two situations of Figs. 10~model I! and 18~model II!
possess the same bulk energy densityf i , but the geometrical
dimensions are different. Neglecting again the very flat coni-
cal shape of the free surface, the height of the cone is given
by ~k5I,II !:

hk5r tan ek ~20!

FIG. 19. Plotf sr
2/ks5 f (a) @Eq. ~11!# showing the dependence

of the splay deformation free energy density on the anglea. The
parameterm determines the periodicity of the screw axis.

FIG. 20. Plotf tr
2/kt5 f (a) @Eq. ~12!# showing the dependence

of the twist deformation free energy density on the anglea. The
parameterm determines the periodicity of the screw axis.

FIG. 21. Plotf br
2/kb5 f (a) @Eq. ~13!# showing the dependence

of the bend deformation free energy density on the anglea. The
parameterm determines the periodicity of the screw axis.
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with eI5a/2 andeII5~p2a!/2, respectively. The cone radius
is r . Integrating over the volume of the cone, the area of its
mantle and the length of the central defect line, we arrive at
the following free energies:

Fi ,k52ki sin
2 a tan ek$r @ ln~r /r 0!21#1r 0%, ~21!

Fc,k5pkc
~12sin ek!

2

cosek sin
2 ek

r 2, ~22!

Fh,k5kh tan ek
~12cosa!2

cos2 a
r . ~23!

The radius of the cone center isr 0. Plots of the deformation
energiesFi , Fc , andFh for the models I and II can be seen
in Figs. 22, 23, and 24.

We conclude thatFi@Fc1Fh becauseFi is a bulk term
and the two other terms concern regions of a much smaller
volume. Experimentally we have the caseaÞ0, so that all
energies are finite; note also that the director distribution is
continuous throughout the space. Therefore model I gives the
lowest energy of all considered alternatives. But an undis-
turbed planar texture possesses nonetheless the lowest free

energy. Thus there has to be a gain in free energy. This
comes from the anchoring energy at the free surface. After
integrating Eq.~2! over the surface area the free energy gives

F f52pkf cos
2~p/22a2j0!r

2. ~24!

The dependence onr is not the same for the appearing
energies, so the angle of inclination should depend onr
when calculated from the minimization process. However,
this gives only a transcendental implicit expression that can-
not be solved explicitly fora, even if only the absolutely
necessary terms are taken into account. However, different
values ofa lead to different periodicitiespf of the relief at
the free surface due to the cholesteric helix. Although we
observe some variations forpf , we do not see a statistically
significant dependence onr . This leads to the conclusion that
the surface anchoring is rather strong and determines the
value ofa, beinga05p/22j0. The variations inpf are then
attributed to the fact that none of the cones examined is
really perfect. Our measurements givej05arccos(p0/pf)
537°, a553°, andeI526°. From the inequalityuF f u.uFi u
we can calculate a lower boundary forkf ; usingr52500 nm,
r 05p0/4573 nm, and ki5331027 dyne, results in
kf.631024 dyne cm21.

Another consequence of the different dependencesF(r ) is
that the gain in free energy is greater when the domains
become larger, thus they should increase with time. The
growth stops only when the two domains meet. Another pa-
rameter that imposes a barrier for the domain radius is the
thickness of the sample. When the bottom of the cone arrives
at the other surface, the domain growth effectively stops,
because the reorientation time for the director at this surface
is of a much greater time scale. These considerations are
indeed in agreement with the experimental findings~see Sec.
III A !.

A last estimation shall be made with respect to the height
of the free surface cone. Still assuming that the surface an-
choring is very strong, the bulk free energyFi can be re-
duced by inclining the free surface, yielding a cone at the
free surface. Neglecting gravitational terms, the free energy
is given by~only taking the absolute necessary terms!:

FIG. 22. PlotFi5 f (a) @Eq. ~21!# showing the dependence of
the bulk free energy on the anglea for the two models I and II. All
other parameters are held constant.

FIG. 23. PlotFc5 f (a) @Eq. ~22!# showing the dependence of
the cone border free energy on the anglea for the two models I and
II. All other parameters are held constant.

FIG. 24. PlotFh5 f (a) @Eq. ~23!# showing the dependence of
the free energy of the cone center on the anglea for the two models
I and II. All other parameters are held constant.
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F5F f1Fi ~25!

5pA11tan2 h~g2kf !r
21ki sin

2~a02h!

3tan@~a02h!/2#r ln~r /r 0!, ~26!

whereh is the surface cone angle andg is the surface ten-
sion. Note that the factor cos2~p/22a02j0! of Eq. ~24! is 1
for optimal anchoring. In order to get an approximation we
develop the free energy in powers ofh ~up to second order!
and minimize. This gives

h5
2ki~cosa2cos 2a!ln~r /r 0!

p~g2kf !r1ki~2 sin 2a2sin a!ln~r /r 0!
. ~27!

To simplify the dependenceh(r ) we neglect all terms of the
denominator other than the first, which is considered to be
predominant. Also taking into accountugu@uksu, we can esti-
mate the inclination angle. Usingg540 dyne cm21 gives
h5331023°. This value is too low compared with the ex-
perimental findings. Too many nonjustified assumptions
have probably been made during the development of the ap-
proximation, especially thatFi@Fc1Fh . Including Fh in
Eq. ~25! will probably increase the angleh. Another point is
that we have used values for monomeric substances in the
absence of proper ones for our oligomeric material. Equation
~27! is obtained by using only the predominant term ofFi for
large radii. In this regionh(r ) is a decaying function. Our
experimental results, however, do not allow a definitive con-
clusion for this behavior, due to the great statistical varia-
tions.

G. Focal-conic domains

Defects appear in a layered system of parallel surfaces at
those points where different layer normals cut each other. In
the general case, these points construct surfaces. For ener-
getical reasons, the system will develop a structure that mini-
mizes the regions of defects. This gives the focal-conic tex-
ture, where defect surfaces degenerate to two curves, an
ellipse, and a hyperbola. They pass through the focii of each
other, the planes in which the two curves are located being
perpendicular to one another. The local layer normal is al-
ways parallel to the unique straight line that cuts both the
ellipse and the hyperbola@22#.

In our case, the two defect curves are a circle and a
straight line. The model cuts out a part of an infinite focal
conic, which is sketched in Fig. 25. The defect line can be
seen in the actual sample while the circle lies outside of the
region that is covered by the domain. Therefore, the physical
constraint for the layer normals to cut each other at the circle
does no longer exist. This defect can relax to any surface,
giving rise to a more general arrangement of the cholesteric
planes. This is the concept of virtual focal surfaces@22#.

However, the observed structure can nonetheless be de-
scribed by a focal-conic arrangement. We have to increase
the distance between the circle plane and our domain to in-
finity to arrive at straight lines for the layers sketched in Fig.
10. Note that we also have to increase the circle radius to
infinity in order to maintain a constant cone anglea.

If we neglect the spiral arrangement of the cholesteric
planes and consider only their conical arrangement, our ide-

alized structure lies between two sorts of focal conics. Nor-
mally only focal conics of the first kind are observed, where
the Gaussian curvature is negative;s1s2,0, s1

21; ands2
21

are the radii of curvature. The layers have therefore a hyper-
bolic shape. But a second possibility for constructing a focal
conic shows the inverse curvatures1s2.0; the layers have
an elliptic shape@27#. The second kind is only very rarely
observed@28#. In the ideal case, we haves1s250 ~parabolic
shape!, but deviations from its structure may appear in both
directions~see Fig. 26!. Note, however, that a circular cone
with constant slope anglesh ande and nonvaryingpf(r ) and
pc(r ) is only possible fors1s250. Thus the deviations from
the ideal case cannot be very large, because we observe no
variations either inpf(r ) or in h(r ). In our model,s1s250
for the cholesteric planes in both the focal-conic and planar
domains lead also to the vanishing of the Gaussian curvature
for the domain border~s!. The geometrical form of the sur-
face focal-conic domains is therefore quite regular. In our
opinion, this is due to the planar texture of the bulk that
imposes ‘‘clear’’ conditions for the border and the central
defects. Only once was a different spiral~fourfold! found. In
all other cases we observed the usual double spiral.

In the general case, when two focal-conic domains meet,
defects may appear on the border and the central defect lines

FIG. 25. Location of the cholesteric focal-conic domains at the
free surface in relation to the general focal-conic structure.

FIG. 26. Two sorts of deviations from the idealized structure.
~a! The Gaussian curvature is positive. This curvature appears very
seldom.~b! The Gaussian curvature is negative. Most of the focal-
conic domains possess this sort of layer curvature.
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may have different indicesm andS, respectively. The peri-
odicities along the surface between two domains can vary
and the surface itself may possess a curvatures1s2Þ0.

V. CONCLUSION

In this article we have presented experimental material
concerning AFM examinations of free surfaces and micro-
tome cuts of an oligomeric cholesteric phase. The structure
of the focal-conic domains that appear spontaneously at the
free surface has been revealed. The cholesteric planes are
inclined relative to the underlying bulk planar texture and
have the form of a helicoidal cone. The structure shows no
disclinations forn; only in the center of the cone, twol1

defects twist themselves around each other. There are no
defects on the border between the focal-conic and the planar
domains. The whole structure develops because the anchor-
ing at the free surface favors an oblique orientation of the
helix axis t relative to the surface. The focal-conic structure
is the director distribution of least elastic energy which al-
lows for this surface anchoring together with a bulk planar
structure. The energy is further lowered by transforming the
free surface to a cone with a small cone angleh;1°, thus
reducing the bulk distortion energy on costs of surface en-
ergy.

One more advantage of these focal conic domains is that

they can develop locally. Alternative surface structures such
as a linear texture need correlations between the cholesteric
planes of dimensions much greater than in the case of the
double spirals.

As the full height of the cone is rather small if not cut
exactly in the center, it becomes clear why the focal-conic
domains are only well visible in oblique cuts. Note also that
the focal conic of Fig. 5 is not embedded in the planar tex-
ture as described by the model. The ‘‘bend’’ of the choles-
teric planes~Fig. 13! is not the way the model predicts. We
explain this by the fact that the domain border in this case is
not focal-conic/planar but the one between two neighboring
focal conic domains. This border has other conditions for the
respective director distributions to fulfill. Let us note that we
have indeed AFM images of perpendicular cuts where the
embedding of the surface focal conic happens in the same
way as in the model~see Fig. 7 for an oblique cut!. However,
in images of perpendicular cuts the focal-conic domains can
rarely be seen due to their very small height.
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